博客
关于我
chapter.数据清洗1.2
阅读量:517 次
发布时间:2019-03-07

本文共 2318 字,大约阅读时间需要 7 分钟。

1.3填充缺失值

当数据量不够或者其他部分信息很重要的时候,就不能删除数据了,这时需要对缺失值进行填充,通过fillna方法可以将缺失值替换为常数值。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)

在这里插入图片描述

使用fillna方法填充

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(0)#全部填充为0

在这里插入图片描述

当然在fillna中传入字典结构数据,可以针对不同列填充不同的值,fillna返回的是新对象,不会对原数据进行修改,可通过inplace就地进行修改。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna({   1:6,3:0})

在这里插入图片描述

还可以通过平均值来作为填充数

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(method='ffill')

在这里插入图片描述

2.移除重复数据
在爬取的数据中往往会出现重复数据,对于重复数据保留一份即可,其余可以移除,在DataFrame数据中,通过duplicated方法判断各行是否有重复数据。

data=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})
import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.duplicated()

在这里插入图片描述

通过drop_duplicates方法,可以删除多余的重复项

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates()

在这里插入图片描述

很显然这种情况下当每行的每个字段都相同时才会判断出为重复,这时可以通过指定部分作为判断重复项的依据。

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates('年龄')

在这里插入图片描述

从结果可以看出,保留的数据为第一次出现的组合。传入keep=‘last’可以保留最后一个。

转载地址:http://hrynz.baihongyu.com/

你可能感兴趣的文章
MySQL进阶篇SQL优化(InnoDB锁问题排查与解决)
查看>>
Mysql进阶索引篇03——2个新特性,11+7条设计原则教你创建索引
查看>>
mysql远程连接设置
查看>>
MySql连接出现1251Client does not support authentication protocol requested by server解决方法
查看>>
Mysql连接时报时区错误
查看>>
MySql连接时提示:unknown Mysql server host
查看>>
MySQL连环炮,你扛得住嘛?
查看>>
mysql逗号分隔的字符串如何搜索
查看>>
MySQL通用优化手册
查看>>
Mysql通过data文件恢复
查看>>
MYSQL遇到Deadlock found when trying to get lock,解决方案
查看>>
MYSQL遇到Deadlock found when trying to get lock,解决方案
查看>>
mysql部署错误
查看>>
MySQL配置信息解读(my.cnf)
查看>>
Mysql配置文件my.ini详解
查看>>
MySQL配置文件深度解析:10个关键参数及优化技巧---强烈要求的福利来咯。
查看>>
Mysql配置表名忽略大小写(SpringBoot连接表时提示不存在,实际是存在的)
查看>>
mysql配置读写分离并在若依框架使用读写分离
查看>>
MySQL里为什么会建议不要使用SELECT *?
查看>>
MySQL里的那些日志们
查看>>